шјес cbac

GCE AS MARKING SCHEME

SUMMER 2018

AS (NEW)
CHEMISTRY - UNIT 2 2410U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

UNIT 2: ENERGY, RATE AND CHEMISTRY OF CARBON COMPOUNDS
MARK SCHEME SUMMER 2018 GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink
One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.
Marking abbreviations
The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

```
cao = correct answer only
ecf = error carried forward
bod = benefit of doubt
```

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
4.				π orbital above and below plane of molecule	1			1		
5.	(a)		$2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2} \quad$ ignore state symbols	1			1			
	(b)		yeast / zymase	1			1		1	
6.					1		1			
7.			 E Z correct formulae (1) E and \boldsymbol{Z} labelled correctly (1) award (1) for one correct formula with correct label		2		2			
			Section A total	5	5	0	10	0	1	

Section B

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
8.	(a)			use of IR spectroscopy (1) peak at 650 to $800\left(\mathrm{~cm}^{-1}\right)$ (1) OR use of mass spectrometry (1) peak at m / z 64/66 (allow 64.5) (1)		2				
	(b)		(mechanism involves) radical / homolytic fission (1) initiation $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \cdot$ (1) $\begin{equation*} \text { propagation e.g. } \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl} \bullet \rightarrow \bullet \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{HCl} \tag{1} \end{equation*}$ $\begin{equation*} \text { termination e.g. } \bullet \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{Cl} \bullet \rightarrow \mathrm{CH}_{2} \mathrm{ClCH}_{3} \tag{1} \end{equation*}$ for both propagation and termination mark to be awarded chloroethane must be a product allow appropriate second propagation step in place of termination	4			4			
	(c)		```2.0 g ethane = 0.067 mol (1) produces }0.067\mathrm{ mol of chloroethane with mass of 4.3 g``` ```None ecf possible ```		3		3	$\begin{align*} & 1 \\ & 1 \tag{1} \end{align*}$		

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
9.	(a)	(i)		(average) energy required to break / released by making (1) 1 mol of bonds (1)	2			2		
		(ii)	bonds broken $\begin{equation*} C \equiv C+2(H-H)=839+2(436)=1711 \tag{1} \end{equation*}$ bonds formed $\begin{align*} & (\mathrm{C}-\mathrm{C})+4(\mathrm{C}-\mathrm{H})=348+4(413)=2000 \tag{1}\\ & \Delta \mathrm{H}=1711-2000=-289 \mathrm{kJmol}^{-1} \tag{1} \end{align*}$		3		3	1		
		(iii)	 products at lower energy than reactants (1) ecf possible from part (ii) ΔH and E_{a} labelled (1)	2			2			

Question			Marking details	Marks available						
			AO1	AO2	AO3	Total	Maths	Prac		
10.	(a)	(i)		Indicative content $\mathrm{RX}+\mathrm{OH}^{-} \rightarrow \mathrm{ROH}+\mathrm{X}^{-} \quad$ (any halogenopropane $/ \mathrm{NaOH}$) mechanism is nucleophilic substitution C-halogen bond must be broken for the reaction to take place based on electronegativity, carbon atom in the chlorocompound is the most $\delta+$ suggests that chlorocompound would react fastest based on bond enthalpies, the $\mathrm{C}-\mathrm{I}$ bond is the weakest suggests that iodocompound would react fastest iodocompound does in fact react fastest so effect of bond strength effect is more significant than effect of polarity	1	1	4	6		6

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(b)	(i)		CFCs produce chlorine radicals / Cl• (1) these destroy the ozone layer (1) the ozone layer protects us from UV radiation (1) UV radiation causes (skin) cancer / mutations (1) ignore all references to global warming	4			4		
	(ii)	C-F / C-H / C-C bonds would need to be broken to form radicals (1) these are too strong to be broken by UV radiation (1)		2		2			
		Question 10 total	5	6	5	16	0	9	

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(b)	(i)		redox / oxidation	1			1		1
	(ii)	 ecf possible from part (a) e.g. if 1° alcohol given			1	1			
		Question 11 total	2	7	3	12	1	3	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
(b)	(i)				2			2		
	(ii)		activation energy E_{a} is lower with a catalyst / E_{a} with catalyst and without catalyst marked on diagram (1) more particles / collisions exceed E_{a} with catalyst (1)		2		2			
			Question 12 total	2	7	4	13	6	6	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
13.	(a)			when fuel from renewable / biological source (burns) (1) no net change in atmospheric carbon dioxide levels (1) carbon dioxide released is that absorbed by photosynthesis as the plant grew (1)	3			3		
	(b)	(i)	carbon dioxide $10 x$ water $5 y \quad$ both needed			1	1	1		
		(ii)	$\begin{align*} & 10 x+5 y-\left[10\left(1+x+\frac{y}{4}\right)\right]=20 \tag{1}\\ & y=12 \tag{1} \end{align*}$			2	2	2		
			Question 13 total	3	0	3	6	3	0	

UNIT 2: ENERGY, RATE AND CHEMISTRY OF CARBON COMPOUNDS SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	Total	Maths	Prac
Section A	5	5	0	10	0	1
8.	4	7	0	11	2	0
9.	5	6	1	12	3	0
10.	5	6	5	16	0	9
11.	2	7	3	12	1	3
12.	2	7	4	13	6	6
13.	3	0	3	6	3	0
Totals	26	38	16	80	15	19

