wjec cbac

GCE AS MARKING SCHEME

SUMMER 2018

AS (NEW) CHEMISTRY - UNIT 2 2410U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

UNIT 2: ENERGY, RATE AND CHEMISTRY OF CARBON COMPOUNDS

MARK SCHEME SUMMER 2018

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.

One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.

Question totals should be written in the box at the end of the question.

Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only ecf = error carried forward bod = benefit of doubt

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

	Questi	on	Marking dataila			Marks a	vailable		
	Questi	on	Marking details	AO1	AO2	AO3	Total	Maths	Prac
1.			any secondary alcohol containing six carbon atoms e.g. H + H + H + H + H + H + H + H + H + H +						
			H = H = H = H = H = H = H = H = H = H =		1		1		
2.					1		1		
3.			only ethanol forms hydrogen bonds / ethane does not form hydrogen bonds but ethanol does (1) with water (1)	2			2		

	Ouestien	Marking dataila			Marks a	vailable		
	Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
4.		π orbital above and below plane of molecule $H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H$	1			1		
5.	(a)	$2C_2H_5OH + 2CO_2$ ignore state symbols	1			1		
	(b)	yeast / zymase	1			1		1
6.		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		1		
7.		H ₃ C H		2		2		
		Section A total	5	5	0	10	0	1

Section B

	Question	Marking dataila	Marks available							
	Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac		
8.	(a)	use of IR spectroscopy (1) peak at 650 to 800 (cm ⁻¹) (1) OR use of mass spectrometry (1) peak at m/z 64/66 (allow 64.5) (1)		2						
	(b)	(mechanism involves) radical / homolytic fission (1)initiation $Cl_2 \rightarrow 2Cl \cdot (1)$ propagation e.g. $C_2H_6 + Cl \cdot \rightarrow \cdot CH_2CH_3 + HCl$ (1)termination e.g. $\cdot CH_2CH_3 + Cl \cdot \rightarrow CH_2ClCH_3$ (1)for both propagation and termination mark to be awarded chloroethane must be a productallow appropriate second propagation step in place of termination	4			4				
	(c)	2.0 g ethane = 0.067 mol (1) produces 0.067 mol of chloroethane with mass of 4.3 g (1) percentage yield = $\frac{1.0}{4.3} \times 100 = 23$ (1) ecf possible		3		3	1			

4

Ques	tion	Marking details			Marks a	vailable		
Ques	SUOT		AO1	AO2	AO3	Total	Maths	Prac
(d)		 two possible products e.g. CH₂ClCH₂Cl, CH₃CH₂CH₂CH₃ (1) with relevant explanation/equation e.g. two ethyl radicals combine / •CH₂CH₃ + •CH₂CH₃ → CH₃CH₂CH₂CH₃ (1) allow appropriate propagation step award (1) for one product and one explanation 		2		2		
		Question 8 total	4	7	0	11	2	0

Marking details(average) energy required to break / released by making (1)1 mol of bonds (1)bonds broken $C=C + 2(H-H) = 839 + 2(436) = 1711$ (1)bonds formed $(C-C) + 4(C-H) = 348 + 4(413) = 2000$ (1) $\Delta H = 1711 - 2000 = -289 \text{ kJmol}^{-1}$ (1)ecf possible	A01 2	AO2	A03	Total 2 3	Maths 1	Prac
1 mol of bonds (1) bonds broken $C\equiv C + 2(H-H) = 839 + 2(436) = 1711$ (1) bonds formed (C-C) + 4(C-H) = 348 + 4(413) = 2000 (1)	2	3			1	
$C \equiv C + 2(H-H) = 839 + 2(436) = 1711 (1)$ bonds formed (C-C) + 4(C-H) = 348 + 4(413) = 2000 (1)		3		3	1	
Energy Energy ΔH Progress of reaction products at lower energy than reactants (1) ecf possible from part (ii)						
	ΔH Progress of reaction products at lower energy than reactants (1)	ΔH Progress of reaction Products at lower energy than reactants (1) ecf possible from part (ii)	Progress of reaction products at lower energy than reactants (1) ecf possible from part (ii)	ΔH Progress of reaction products at lower energy than reactants (1) ecf possible from part (ii)	Progress of reaction products at lower energy than reactants (1) ecf possible from part (ii)	Progress of reaction products at lower energy than reactants (1) ecf possible from part (ii)

Question	Marking dataila	Marks available							
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac		
(b)	Hess' cycle drawn with all arrows in correct direction / $\Delta H = \Delta H$ reactants – ΔH products (1)								
	correct values –1300, –572 and –1600 on arrows / Δ <i>H</i> = [–1300 + (–572)] – (–1600) (1)					1			
	$\Delta H = -272 \text{ kJmol}^{-1} (1)$		3		3	1			
(c)	bond enthalpy terms are averages / same bond in different environment will have slightly different bond enthalpy			1	1				
(d)	(electrophilic) addition / hydrogenation	1			1				
	Question 9 total	5	6	1	12	3	0		

	Ques	tion	Marking datails			Marks a	vailable		
	Ques	lion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
10.	(a)	(i)	Indicative content						
			$RX + OH^- \rightarrow ROH + X^-$ (any halogenopropane / NaOH)		1				
			mechanism is nucleophilic substitution	1					
			C—halogen bond must be broken for the reaction to take place						
			based on electronegativity, carbon atom in the chlorocompound is the most $\delta\text{+}$						
			suggests that chlorocompound would react fastest						
			based on bond enthalpies, the C—I bond is the weakest suggests that iodocompound would react fastest						
			iodocompound does in fact react fastest so effect of bond strength effect is more significant than effect of polarity			4	6		6

Question	Marking details	Marks available						
Question	Warking details	AO1	AO2	AO3	Total	Maths	Prac	
	5-6 marks Equation and nucleophilic substitution included; both bond strength and po The candidate constructs a relevant, coherent and logically structured account included and substantiated line of reasoning is evident and scientific conventions and voca	cluding key	elements	of the ind	licative co		ustaine	
	3-4 marks Equation or nucleophilic substitution included; some reference to both bon The candidate constructs a coherent account including many of the key elements linking of key points and use of scientific conventions and vocabulary is generally	of the indi			ne reason	ing is evide	ent in t	
	1-2 marks Reference to the reaction type or to the data given <i>The candidate attempts to link relevant points from the indicative content. Cohere</i> <i>material. There is some evidence of appropriate use of scientific conventions and</i>			ission and	l/or inclus	ion of irrele	evant	
	0 marks The candidate does not make any attempt or give an answer worthy of credit.							
(ii)	$Ag^{+}(aq) + X^{-}(aq) \rightarrow AgX(s)$ accept any halide		1		1			
(iii)	look down through solution / put a cross on paper underneath flask (1)							
	record time taken for cross to be obscured (1)		2		2		2	
	OR							
	colorimeter (1)							
	record time taken to reach set absorbance (1)							
· I I								

Ques	stion	Marking details	Marks available							
Quea	SUOII	Marking details	A01	AO2	AO3	Total	Maths	Prac		
(b)	(i)	CFCs produce chlorine radicals / CI• (1)								
		these destroy the ozone layer (1)								
		the ozone layer protects us from UV radiation (1)								
		UV radiation causes (skin) cancer / mutations (1)	4			4				
		ignore all references to global warming								
	(ii)	C—F / C—H / C—C bonds would need to be broken to form radicals (1)								
		these are too strong to be broken by UV radiation (1)		2		2				

Question 10 total

Question	Marking dataila	Marks available							
Question	Marking details	A01	AO2	AO3	Total	Maths	Prac		
11. (a)	Empirical formula percentage oxygen = 35.6 C : H : O = $\frac{53.3}{12}$: $\frac{11.1}{1}$: $\frac{35.6}{16}$ (1)		1			1			
	= 4.44 : 11.1 : 2.22								
	$= 4:10:2 \qquad \Rightarrow \qquad C_2H_5O (1)$		1						
	Mass spectrum $M_{\rm r} = 90$ (1)		1						
	molecular formula $C_4H_{10}O_2$ (1)		1						
	any fragment linked to m/z (1)		1						
	IR O—H peak at 3200-3550 (1)	1							
	NMR 3 hydrogen environments (1)		1						
	Potassium dichromate(VI) X is 1° alcohol, 2° alcohol or aldehyde (1)		1				1		
	Sodium carbonate (carboxylic) acid not formed so X must be 2° alcohol / oxidised to ketone (1)			1			1		
	X is butane-2,3-diol / unambiguous formula (1)			1	10				

0.00	stion	Marking details	Marks available						
Que	511011		AO1	AO2	AO3	Total	Maths	Prac	
(b)	(i)	redox / oxidation	1			1		1	
	(ii)	H_3C C C C CH_3 ecf possible from part (a) e.g. if 1° alcohol given			1	1			
		Question 11 tota	I 2	7	3	12	1	3	

	0	otion			Morkin	n dataila			Marks a	vailable		
	Ques	stion			warking	g details	AO1	AO2	AO3	Total	Maths	Prac
12.	(a)	(i)										
				[⁻]	Rate							
				0.1	18							
				0.2	50							
				0.3	56							
				0.4	83			1		1	1	1
				0.5	100							
		(ii)	axes	– labelled and i	minimum hali	f of both axes used (1)		1				
			points	points plotted correctly – tolerance $\pm \frac{1}{2}$ square (1) straight line of best fit clearly missing point at 0.2 (1) rate proportional to concentration of I ⁻ accept first order				1				
			straig						1	3	3	3
		(iii)	rate p						1	1	1	
			accep									
		(iv)	rate r	ead from graph	– in the rang	je 28-32 × 10 ⁻³ s ⁻¹ (1)						
			time =	= 33 s	accept rang	ge 31.25-35.7 (1)		2		2	1	
		(v)	reacti	on is faster at s	start / slows a	s it proceeds (1)						
				entrations of rea ured (1)	actants highe	r at start / average rate is			2	2		2

Ques	stion	Marking details	Marks available						
Ques	SUON		AO1	AO2	AO3	Total	Maths	Prac	
(b)	(i)	Number of particles Energy							
		axes labelled (1) curve – start at origin, hump, does not touch <i>x</i> -axis (1)	2			2			
			-			_			
	(ii)	activation energy E_a is lower with a catalyst / E_a with catalyst and without catalyst marked on diagram (1) more particles / collisions exceed E_a with catalyst (1)		2		2			
		Question 12 total	2	7	4	13	6	6	

Question		stion	Marking dataila	Marks available							
QUESTION			Marking details	A01	AO2	AO3	Total	Maths	Prac		
13.	(a)		when fuel from renewable / biological source (burns) (1)								
			no net change in atmospheric carbon dioxide levels (1)								
			carbon dioxide released is that absorbed by photosynthesis as the plant grew (1)	3			3				
	(b)	(i)	carbon dioxide 10x								
			water 5y both needed			1	1	1			
		(ii)	$10x + 5y - [10(1 + x + \frac{y}{4})] = 20 (1)$								
			y = 12 (1)			2	2	2			
			Question 13 total	3	0	3	6	3	0		

UNIT 2: ENERGY, RATE AND CHEMISTRY OF CARBON COMPOUNDS

Question	A01	AO2	AO3	Total	Maths	Prac
Section A	5	5	0	10	0	1
8.	4	7	0	11	2	0
9.	5	6	1	12	3	0
10.	5	6	5	16	0	9
11.	2	7	3	12	1	3
12.	2	7	4	13	6	6
13.	3	0	3	6	3	0
Totals	26	38	16	80	15	19

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

2410U20-1 WJEC AS Chemistry – Unit 2 MS Summer 2018